Intermediates in the Photochemical Reaction of Tetraphosphorus Trisulphide with Organic Disulphides; Phosphorus-31 Nuclear Magnetic Resonance Parameters for 2,6-Bis(alkylthio)- and 2,6-Di-iodo-3,5,7-trithia-1,2,4,6tetraphosphabicyclo[2.2.1]heptanes and for 3,6-Bis(alkylthio)-2,5,7-trithia-1,3,4,6-tetraphosphabicyclo[2.2.1]heptanes

Bruce W. Tattershall

Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 7RU

 P_4S_3 (1) reacts with organic disulphides RSSR under glass-filtered u.v. irradiation to give at first β - $P_4S_3(SR)_2$ (2) and then α - $P_4S_3(SR)_2$ (3) (R = Me, Et, or Ph), identified in the product mixtures by their ³¹P n.m.r. spectra. The identities of β - $P_4S_3(SPh)_2$ and α - $P_4S_3(SR)_2$ (R = Et or Ph) have been confirmed by the preparation of products with the same spectra by substitution reactions of β - $P_4S_3I_2$ or α - $P_4S_3I_2$ respectively. The ³¹P n.m.r. spectrum of β - $P_4S_3I_2$ is reported.

In initial work on the photochemical oxidation of P_4S_3 (1) by organic disulphides,¹ molar ratios RSSR: P_4S_3 of at least 6:1 were used, and it was found that the P_4S_3 cage was completely cleaved according to equation (i) (R = Me or Ph). It has now

$$P_4S_3 + 6 RSSR \longrightarrow 3 SP(SR)_3 + P(SR)_3$$
 (i)

been found that if a 1:1 reactant ratio and mild conditions (incomplete reaction in solution in CS₂ at room temperature) are employed, then β -P₄S₃(SR)₂ (2),[†] the product of addition of the disulphide across a P–P bond of P₄S₃, can be identified in the solution by ³¹P n.m.r. The reaction is similar to that of iodine with P₄S₃,^{2.3} except that it occurs under photochemical rather than purely thermal conditions [equation (ii); R = Me,

$$P_4S_3 + RSSR \longrightarrow \beta \cdot P_4S_3(SR)_2$$
(ii)
(1) (2)

Et, or Ph]. A smaller concentration of the isomeric product with a rearranged skeleton, α -P₄S₃(SR)₂ (3), is also observed (Table 1). On further irradiation, the yield of the β isomer decreases, while that of the α isomer increases. At the same time, the concentration of the cage fragmentation product SP(SR)₃ increases. The rate of disappearance of the β isomer is much greater under photolysis than in the dark, and photochemical isomerisation of (2) to (3) probably takes place, analogously to the previously reported thermal isomerisation of the iodide.^{2.3}

Results and Discussion

The ³¹P n.m.r. spectra of β - and α -P₄S₃(SR)₂ have been accurately measured, and fitted by the NUMARIT computer program to the anticipated AB₂M and AA'BB' systems (Figure 2) respectively. In each case, at least 23 transitions have been assigned and iterative fitting has led to a r.m.s. deviation of less than 1 Hz, in spectra with widths of up to 12 000 Hz (Tables 2 and 3). A study of the ³¹P n.m.r. spectrum at 36.4 MHz of α -P₄S₃I₂ has already been reported (Table 3),⁴ but previous authors have found that β -P₄S₃I₂ was too insoluble for n.m.r. measurement.³ Using an operating frequency of 121.5 MHz for

Figure 1. Skeletal arrangement of P_4S_3 (1), β - $P_4S_3(SR)_2$ (2), and α - $P_4S_3(SR)_2$ (3)

Figure 2. ³¹P N.m.r. spin systems for compounds with the β -P₄S₃ and α -P₄S₃ bicyclic skeletons: (a) β isomer, (b) α isomer, and (c) asymmetric compounds (4) with β -P₄S₃ skeleton

 31 P, sufficient sensitivity was present to obtain a good spectrum of β -P₄S₃I₂ (Table 2).

It has not been possible to obtain pure samples of any of the previously unknown compounds β -P₄S₃(SR)₂ or α -P₄S₃(SR)₂, although a 97.6 mol % pure sample of α -P₄S₃(SPh)₂ was made by another route (see below). The case that the AB₂M- and AA'BB'-³¹P molecules that were observed in solution are indeed the compounds stated rests not only on grounds of synthetic likelihood, but on the following evidence: (a) coupling constants which are entirely consistent with the proposed structures (see discussion of n.m.r. results); (b) similar changes in coupling constants and chemical shifts on going from β -P₄S₃(SR)₂ to β -P₄S₃I₂, as on going from α -P₄S₃(SR)₂ to α -P₄S₃(SPh)₂ from β -P₄S₃I₂ and of α -P₄S₃(SR)₂ (R = Et or Ph) from α -P₄S₃I₂, by substitution reactions.

Substitution for iodine in α -P₄S₃I₂ has previously been carried out using (SnMe₃)₂S,⁵ AgX (X = Cl, Br, CN, or NCS),⁶ piperidine,⁶ morpholine,⁶ or aniline.⁷ Corresponding reactions of β -P₄S₃I₂ have been reported only with (SnMe₃)₂S,⁵ or with aniline.⁷ Preparative use of nucleophilic substitution is difficult

[†] Following the trivial naming of the iodides $P_4S_3I_2$ by previous authors,^{2,3} compounds with the skeleton (2) (Figure 1) are referred to as β isomers, while those with skeleton (3) are α isomers. The skeletal atom numbering for P_4S_3 (3,5,7-trithia-1,2,4,6-tetraphosphatricyclo-[2.2.1.0^{2.6}]heptane) is retained for the systematic name of (2) (see Figure 1).

	measured by	% of total phosphorus as					
	x	β-P ₄ S ₃ X ₂	'Asymmetric P ₄ S ₃ X ₂ '	$\alpha - P_4 S_3 X_2$	SPX,	PX ₃	P ₄ S ₁
(a) From P_4S_3 (10.2 mmol) +	MeSSMe (9.8 r	$nmol) + CS_2$	(5 cm ³)	432	5	5	4 J
After 1 h irradiation After 4 h irradiation	SMe SMe	22 20	2 2	2 14	0.5 5		73 58
(b) From P_4S_3 (10.1 mmol) +	EtSSEt (9.4 mm	nol) + CS_2 (5	cm ³)				
After 1 h irradiation After 4 h irradiation	SEt SEt	7 15	1 2	1 5	0 1		90 76
(c) From P_4S_3 (10.0 mmol) +	PhSSPh (10.0 r	nmol) + CS_2	(5 cm ³)				
After 1 h irradiation After 4 h irradiation	SPh SPh	9 0		4 4	9 12	4 4	73 80
(d) From β -P ₄ S ₃ I ₂ (0.63 mmo) After 15 min reaction	l) + SiMe ₃ (SPh SPh	a) (2.47 mmol) 68	$+ CS_2 (2 \text{ cm}^3)$	0	0		Q
	51 11						
ible 2. ³¹ P N.m.r. parameters for β -P ₄	S ₃ X ₂						
:	X I		SMe	SEt	SP	1	
Chemical shifts/p.p.m.							
δ	150.84		103.33	105.62	114.4	14	
ο _Β δ _Μ	195.52		175.96	172.38	99.2 175.7	73	
Coupling constants ^a /H	łz						
J_{AB}	-252.01(0.0)	(8) - 29	6.30 (0.14)	-291.90 (0.10)	-292.29 (0.09)	
J _{am} J _{bm}	82.52 (0.1 56.08 (0.0	(8) 5	0.45 (0.20)	50.31 (0.09)	50.96 (0.11) 0.09)	
No. of transitions assigned	24		24	24	24		
R.m.s. deviation/Hz	0.17		0.42	0.19	0.1	8	
s in parentheses.				••••		•	
	с. У						
IDE 3. TP N.M.I. parameters for α -P ₄	,5 ₃ ,7 ₂	T	SM	[a	SE+	SDP	
Chemical shifts/p.p.m.	1	I	5141		SLI	51 11	
δ	125.26	125.06	105.	74	103.74	109.4	9
δ _B	128.94	128.72	126.	62	122.72	127.4	8
$\delta_{B} - \delta_{A}$	3.68	3.67	20.	88	18.98	17.9	8
Coupling constants ^b /Hz							_
J _{AA} '	74.8	74.8 (0.1)	57.8 ((0.5) 5	8.1 (0.6) 8 8 (0.4)	60.3 (0	.2)
JAB Jan'	-243.0 - 21.7	- 243.7 (0.1) 21.6 (0.1)	- 290.1 (22.1 ((0.4) - 28 (0.2) - 2	0.0 (U.4) 2 3 (0 3)	- 282.4 (0 21 7 (0	.1) .1)
$J_{{ m BB}'}$	9.3	9.3 (0.1)	-9.0 ((0.5) -	8.4 (0.6)	-6.0(0	.2)
No. of transitions assigned		24	24		23	24	

Table 1. Relative quantities of products, measured by ³¹P n.m.r.

^a Ref. 4. ^b σ in parentheses.

because products are frequently thermally unstable, and because the only good solvent for α - or β -P₄S₃I₂ is CS₂, which is itself susceptible to attack by strong nucleophiles. It has now been found that while a solution of α -P₄S₃I₂ in CS₂ does not react at room temperature with EtSH, addition of triethylamine causes immediate reaction according to equation (iii). Except for a small quantity of product whose spectrum was barely distinguishable from the n.m.r. baseline, but which was probably $P(SEt)_3$, ³¹P n.m.r. showed that the α -P₄S₃I₂ was quantitatively converted to α -P₄S₃(SEt)₂. There were non-phosphorus-containing components in the product, however, which could not be removed by vacuum sublimation (which caused complete decomposition) nor by crystallisation methods.

$$\alpha - P_4 S_3 I_2 + 2 \operatorname{EtSH} + 2 \operatorname{NEt}_3 \longrightarrow \\ \alpha - P_4 S_3 (\operatorname{SEt})_2 + 2 \operatorname{NHEt}_3 I \quad \text{(iii)}$$

J. CHEM. SOC. DALTON TRANS. 1985

In preparing α -P₄S₃(SPh)₂ from α -P₄S₃I₂, contamination by organic by-products was avoided by using Hg(SPh)₂ as the substitution reagent.⁸ The solubility of this mercurial in CS₂ was inconveniently low, but addition of 4 mmol of pyridine (py) per mmol of mercurial caused it to dissolve. This solution was shown by ${}^{31}P$ n.m.r. to react quantitatively with $\alpha - P_4 S_3 I_2$ [equation (iv)], but no HgI₂ was precipitated because

$$\alpha - P_4 S_3 I_2 + Hg(SPh)_2 \xrightarrow{py/CS_2} \alpha - P_4 S_3(SPh)_2 + HgI_2(py)_2 \quad (iv)$$

 $HgI_2(py)_2$ is also soluble in CS₂. Despite an old report⁹ that $HgI_2(py)_2$ completely loses pyridine on warming in a few hours, an attempt to decompose it to insoluble HgI₂, by pumping away pyridine under vacuum, failed. In 6 h at 97 °C, little pyridine was removed, but the α -P₄S₃(SPh)₂ was shown by ³¹P n.m.r. to have completely decomposed, approximately according to equation (v).

$$6 \alpha - P_4 S_3 (SPh)_2 \longrightarrow 5 P_4 S_3 + 3 SP(SPh)_3 + P(SPh)_3$$
 (v)

Pyridine did not need to be used if the reaction between α -P₄S₃I₂ and Hg(SPh)₂ was carried out quickly in refluxing benzene, in which both reagents have some solubility. Again the reaction proceeded quantitatively, but while much yellow HgI₂ was precipitated, it was not possible to remove all of the HgI, contaminant from the α -P₄S₃(SPh)₂ by fractional crystallisation. Conversion of yellow HgI2 to the less soluble red form went very slowly, over a period of several months at room temperature. The best elemental analyses for α -P₄S₃(SPh)₂ corresponded to a 2.4 mol % contamination by HgI₂, and there has not yet been any success in growing crystals for a structure determination.

The known thermal instability of β -P₄S₃I₂ to isomerisation^{2,3} made $Hg(SPh)_2$ in refluxing benzene an unsuitable reagent for its substitution. It was found, however, that there is no reaction between $SiMe_3(SPh)$ and CS_2 at room temperature, allowing this reagent to be used. β -P₄S₃I₂, which is only slightly soluble in CS₂ alone, rapidly dissolved in a solution of SiMe₃(SPh) in CS₂. ³¹P N.m.r. of the solution showed a strong spectrum of β -P₄S₃(SPh)₂, but a compound with an ABCM spectrum, and which was probably an asymmetric isomer of $P_4S_3(SPh)_2$ (see discussion of n.m.r. results), was also present, along with P_4S_3 and traces of α - $P_4S_3(SPh)_2$ and $SP(SPh)_3$.

Discussion of N.M.R. Results.—Despite previous reports of a number of compounds with the α -P₄S₃ bicyclic skeleton,⁶ only for α -P₄S₃I₂ has a complete assignment of the ³¹P n.m.r. spectrum been given.⁴ No n.m.r. spectra have been reported for compounds with the β -P₄S₃ bicyclic skeleton.

The parameters for the SMe and SEt compounds in Tables 2 and 3, and for α -P₄S₃(SPh)₂, were obtained from spectra measured in the Fourier-transform mode with inverse gated proton decoupling. This allowed pure AB₂M and AA'BB' spectra of the respective phosphorus cages (Figure 2) to be accumulated, uncomplicated by coupling to protons on the ligands, but also without distortion of intensities by the nuclear Overhauser effect. ${}^{31}P-{}^{1}H$ coupling in β -P₄S₃(SPh)₂ was smaller than in the SMe or SEt compounds, and was not resolved, making a decoupling experiment unnecessary in this case.

Coupling constants in these phosphorus spectra are generally an order of magnitude larger than those found for the same spin systems of protons in organic compounds, yet spectral linewidths are not much wider. This means that considerably more detail can be seen for a given spin system in the phosphorus case, and use of the first-order approximation in interpreting the spectra tends frequently to lead to wrong conclusions. For example, in the spectrum of β -P₄S₃I₂, the P_A resonance clearly appears as a doublet of doublets of doublets. One might conclude that the nuclei marked P_B and $P_{B'}$ in Figure 2 are in fact non-equivalent in the iodide, coalescence of peaks separated by 9 Hz being required to produce the triplet expected for a symmetrical molecule. In fact, despite the large internal shift δ_{AB} (6 990.7 Hz, 57.538 p.p.m.) and small J_{AB}/δ_{AB} (0.036), the system should not be treated as first order, and simulation by NUMARIT using the symmetrical AB₂M model correctly predicts the observed spectrum.

The first-order approximation predicts a doublet of triplets for P_M of β - $P_4S_3(SMe)_2$, as was indeed found for the other three compounds in Table 2. In fact, the centre peak of the low-field triplet of the SMe compound was split by 4.5 Hz, while that of the high-field triplet was split by 2.4 Hz (Figure 3). This too could be simulated, provided that J_{AM} and J_{BM} were of opposite sign to J_{AB} . When this sign relationship was tried for the other β isomers, it was found in each case that iterative fitting converged to significantly better r.m.s. deviations than with all positive coupling constants.

While only 24 major transitions are expected in the ${}^{31}P{-}{{}^{1}H}$ spectrum of β -P₄S₃(SMe)₂, and these are readily assigned to the observed spectrum, the undecoupled ³¹P spectrum, treated as an ABB'MX₃X₃' system with $J_{BX'} = 0$, is expected to contain 728 major transitions, making total assignment and iterative fitting impractical. We therefore estimated J_{BX} (${}^{3}J_{PH}$) as 12.0 ± 0.5 Hz by trial and error, by visually comparing the region of the spectrum mainly due to P_B and $P_{B'}$ (Figure 4) with the envelope predicted by NUMARIT simulations. The appearance of the simulated spectrum was found to be insensitive to $J_{BB'}$, and a value of 0 was assumed. Like P_4S_3 ,¹⁰ these bicyclic derivatives show ³¹P chemical

Figure 3. The P_M part of the observed (a) and calculated (b) ${}^{31}P{}_{1}{}^{1}H$ n.m.r. spectrum of β -P₄S₃(SMe)₂

Table 4. ³¹P Chemical shifts [in p.p.m. relative to SP(SPh)₃ as internal standard] for β -P₄S₃(SPh)₂ and P₄S₃ in solution in CS₂ (a) from the photolytic reaction of P₄S₃ with PhSSPh, and (b) from the reaction of β -P₄S₃I₂ with SiMe₃(SPh)

	Solution (a)	Solution (b)	
$3-P_4S_3(SPh)_2$			
δ	25.36	24.76	
δ _B	9.74	9.52	
δ	87.22	86.05	
$\delta_A - \delta_B$	15.62	15.24	
$\delta_M - \delta_A$	61.86	61.28	
$\delta_{M} - \delta_{B}$	77.48	76.53	
${}_{4}S_{3}$ (P _A axial	, P _B basal)		
δ	- 19.47	-21.45	
δ	-206.97	-210.06	
8 8	187 50	188.61	

Figure 4. Part of the observed (a) and calculated (b) undecoupled ³¹P n.m.r. spectrum of β -P₄S₃(SMe)₂; the two peaks on the left are mainly due to P_A, while the others are mainly due to P_B and P_B'

shifts which are unusually sensitive to concentration in CS₂ solution. For example, spectra of solutions of β -P₄S₃(SPh)₂ obtained from addition of PhSSPh to P₄S₃ and from reaction of β -P₄S₃I₂ with SiMe₃(SPh) [Table 4, solutions (a) and (b) respectively] yielded the same coupling constants to within 4 σ (0.4 Hz), but gave chemical shifts [measured from SP(SPh)₃ as internal standard] which were different by up to 143 Hz (1.17 p.p.m.). Although the bridgehead atom P_M absorbed at highest frequency, its chemical shift was the most sensitive to environment. This is in contrast to the cases of P₄, P₄S₃, and PBr₃, where the sizes of dispersion interactions and hence solvent

shifts were found to decrease linearly with absorption frequency.¹¹ The standard deviations found by NUMARIT for chemical shifts for particular samples (typically 0.001—0.003 p.p.m.) were much smaller than solvent shifts which would limit reproducibility of data, and are therefore omitted from Tables 2 and 3.

Similarity of electronic structure between β - and α -isomers is reflected in the similarity of the corresponding coupling constants (Tables 2 and 3). Taking the SMe compounds as examples, the similarity of ${}^{1}J_{AB}$ [296.3 and 290.1 Hz respectively; cf. 277.7 Hz for $P_4(SiMe_2)_3Bu_2^{1}$ which has the α isomer structure 12] is not surprising, but ${}^{2}J_{AM}$ (β isomer) is similar to ${}^{2}J_{AA'}$ (α isomer) [69.0 and 57.8 Hz respectively; cf. 73.9 for $P_4(SiMe_2)_3Bu_2^{1}$, 69.8 for P_4S_3 , and 85 Hz for $P_4Se_3^{13}$], and ${}^{2}J_{BM}$ (β isomer) and ${}^{2}J_{AB'}$ (α isomer) are smaller than this [50.5 and 22.1 Hz respectively; cf. 12.4 Hz for $P_4(SiMe_2)_3Bu_2^{1}$]. The change in ${}^{1}J_{AB}$ in going from $P_4S_3(SMe_2$ to $P_4S_3I_2$ is almost the same for the two isomers (44.3 and 46.4 Hz respectively), as is the change in ${}^{2}J_{AM}$ (β isomer) and ${}^{2}J_{AA'}$ (α isomer) (13.5 and 17.0 Hz respectively). ${}^{2}J_{AB'}$ almost does not change in going from α - $P_4S_3(SMe)_2$ to α - $P_4S_3I_2$, and there is likewise little change (5.6 Hz) in ${}^{2}J_{BM}$ for the β isomers. Of the changes in chemical shift on going from $P_4S_3(SMe)_2$ to $P_4S_3I_2$, it is for both isomers the bridgehead atom P_A which changes most.

The greater sensitivity of chemical shift of the bridgehead phosphorus atoms, compared with the atoms carrying the exocyclic substituents, both to change of substituent and to intermolecular interactions in solution, appears strange. I have made a related observation in a preliminary investigation of the photochemical reaction of P_4S_3 with a cyclic disulphide, 1,2dithiolane, which gave a polymeric product. ³¹P N.m.r. showed this to contain the $\beta\text{-}P_4S_3X_2$ skeleton. While the shifts and couplings (δ_{A} 107.25, δ_{B} 97.62, δ_{M} 174.42 p.p.m.; J_{AB} 292, J_{AM} 66, J_{BM} 50 Hz) were similar to those for β -P₄S₃(SEt)₂ (Table 2), the peaks were much broader; those in the B grouping were the narrowest (23 Hz at half height), while in the A group J_{AM} was barely resolved, and the M group of peaks was not resolved at all. Here again the bridgehead atoms P_A and P_M are showing greater sensitivity to a varying environment than P_B. These effects may be attributed to a tendency of the book-shaped molecules to open or close to a small extent by changing the intercyclic angles 3-4-5 and 2-1-6 (Figure 1), in response to electronic effects. Proof of this hypothesis must await crystals for a structure determination.

In the ^{31}P spectrum of the product of reaction of $\beta\text{-}P_4S_3I_2$ with SiMe₃(SPh), besides the spectrum of β -P₄S₃(SPh)₂, 24 peaks could be assigned to an ABCM spectrum. Similar spectra were found for compounds present in low yield in the products of photolysis of $P_4\tilde{S}_3$ with MeSSMe and with EtSSEt (though not with PhSSPh). The resulting parameters are shown in Table 5 (the multiplet due to P_c of the ethyl case was obscured, so a computer fit was not done, the given parameters being obtained by a first-order analysis of the other three multiplets). They may be assigned to a series of bicyclic compounds (4) (Figure 2), isomeric with and having the same structure as β -P₄S₃(SR)₂, but with P_B chemically non-equivalent to P_C . The evidence that these are indeed third isomers of $P_4S_3(SR)_2$ is as follows. Because the formation of the SPh compound was by a reaction different from the one by which the SMe and SEt compounds were formed, and no obvious ligand other than SR was present in all cases, it is probable that X and Y in (4) are both SR. ${}^{1}J_{AB}$ and ${}^{1}J_{AC}$ have similar values to each other and to ${}^{1}J_{AB}$ in β -P₄S₃(SR)₂, so it is probable that P_B and P_C carry SR groups and no additional ligands. The proposed reason for the nonequivalence of P_B and P_C is that pyramidal bonding around one phosphorus is inverted with respect to the other. If the SR ligands in the symmetrical β -P₄S₃(SR)₂ are on the same side of

	R	Me	Et	Ph
Chemical shifts/p.p.r	n.			
δ.		90.54	89.7	95.33
δ		108.18	104.4	110.60
δ		130.66	а	128.10
δ _Μ		187.42	186.21	187.42
Coupling constants ^b	/Hz			
JAR	-	- 322.9 (0.3)	- 323	- 317.39 (0.08)
	-	- 309.4 (0.3)	- 308	- 303.30 (0.08)
		66.7 (0.3)	65.5	67.83 (0.08)
J _{BC}		2.0 (0.3)	с	2.63 (0.08)
J _{BM}		35.4 (0.3)	35.2	36.46 (0.08)
J _{CM}		15.6 (0.3)	15.0	17.65 (0.08)
No. of transitions				
assigned		32		32
R.m.s. deviation/Hz		0.54	с	0.13
"Not observed. " σ ir	pare	ntheses. ' Not	obtained; no	computer fit done.

Table 5. ³¹P N.m.r. parameters for asymmetric $P_4S_3(SR)_2$ isomers

the $P_B P_M P_B$ plane (Figure 2) as the bridging sulphur atom, as was found ² in the solid β -P₄S₃I₂, then by comparison of J_{BM} and J_{CM} in the asymmetric molecules (Table 5) with J_{BM} in β -P₄S₃(SR)₂ (Table 2), it may be concluded that X in (4) is probably on the same side as the bridging sulphur, and Y is on the opposite side. A second symmetrical isomer is possible, with both X and Y on the opposite side of the phosphorus plane from the bridging sulphur. No spectra corresponding to this isomer could be identified in the products of photolysis of P₄S₃ with RSSR, and its yield, if any, must be even smaller than that of the unsymmetrical isomer (4).

Experimental

General techniques and photolysis procedures were as described previously,¹ except that n.m.r. spectra were measured using a Bruker WM300WB spectrometer operating at 121.5 MHz for ³¹P. A capillary containing D_3PO_4 - D_2O (molar ratio equivalent to 85% H_3PO_4 - H_2O) was used as lock and external standard; chemical shifts of known compounds were not significantly different from those measured from H_3PO_4 - H_2O .

EtSSEt (Pfalz and Bauer) and SiMe₃(SPh) (Aldrich) were used as received. α -P₄S₃I₂,¹⁴ β -P₄S₃I₂,² and Hg(SPh)₂^{8b} were prepared by literature methods.

Reaction of α -P₄S₃I₂ with EtSH-NEt₃.-- α -P₄S₃I₂ (5.39 g, 11.4 mmol) was flushed with N_2 in a three-necked flask equipped with a micro dropping funnel and magnetic stir-bar, and dissolved in dry CS₂ (60 cm³). EtSH (dried over CaCl₂) (1.70 cm³, 23.0 mmol) was added. The i.r. spectrum showed no reaction. NEt₃ (dried over NaOH) (3.20 cm³, 22.9 mmol) was then added dropwise to the stirred solution at 0 °C over 15 min, and stirring at 0 °C was continued for a further 30 min. Filtration using positive nitrogen pressure gave a pale yellow solution, from which CS₂ was removed at low temperature by vacuum transfer, yielding a bright yellow oil. ³¹P N.m.r. showed $\alpha\text{-}P_4S_3(SEt)_2$ (see Results and Discussion section) and no remaining α -P₄S₃I₂, nor P₄S₃. The mass spectrum (m.s.) showed m/e 341.8333 (M^+ , C₄H₁₀P₄S₅⁺ requires 341.8337), 313 (M – Et), 281 (M – SEt), 252 (M – SEt₂), 220 (M – S_2Et_2 ; m^* 286.5 ($M \longrightarrow 313$), 230.9 ($M \longrightarrow 281$). The oil was immiscible with light petroleum (b.p. 40-60 °C). Attempted crystallisation from toluene failed to yield pure α -P₄S₃(SEt)₂,

³¹P n.m.r. and m.s. showing traces of its decomposition products $SP(SEt)_3$ and $P(SEt)_3$. Vacuum sublimation/molecular distillation at 85 °C for 2 h gave $SP(SEt)_3$ as distillate (i.r. and m.s.), with P_4S_3 remaining in the residue.

Reaction of α -P₄S₃I₂ with Hg(SPh)₂.— α -P₄S₃I₂ (2.76 g, 5.82 mmol) and Hg(SPh)₂ (2.44 g, 5.82 mmol) were separately flushed with nitrogen and dissolved in refluxing dry benzene (70 and 80 cm³ respectively). The hot solution of Hg(SPh)₂ was quickly added to the stirred solution of α -P₄S₃I₂ and reflux resumed for 10 min. After 5 min an orange-yellow precipitate formed. The reactor was removed from the heating bath and allowed to cool with stirring for a further 1 h. The colourless solution was filtered and solvent removed (as above), to yield a bright yellow solid. ³¹P N.m.r. showed only α -P₄S₃(SPh)₂ (see Results and Discussion section), but m.s. showed first HgI₂ (at probe temperature <100 °C) then α -P₄S₃(SPh)₂ (at probe temperature 200 °C) giving m/e 438 (M^+), 329 (M – SPh), 252 $(M - SPh_2)$, 220 $(M - S_2Ph_2)$. Fractional recrystallisation from CS₂ or toluene separated yellow HgI₂ and yielded a nearcolourless product [(Found: C, 32.1; H, 2.2. C₁₂H₁₀P₄S₅ requires C, 32.9; H, 2.3%). These results can be explained by assuming a 2.4 mol % HgI₂ impurity]. Complete removal of HgI_2 could not be effected.

Reaction of β -P₄S₃I₂ with SiMe₃(SPh).— β -P₄S₃I₂ (0.30 g, 0.63 mmol) was added to a stirred solution of SiMe₃(SPh) (0.45 g, 2.47 mmol) in CS₂ (2 cm³) at 20 °C. The brown-orange β -P₄S₃I₂ rapidly dissolved to give a pale yellow solution. A sample was taken after 15 min for ³¹P n.m.r., which showed mainly β -P₄S₃(SPh)₂, together with a compound with an ABCM spectrum (see Results and Discussion section; for relative concentrations, see also Table 1). Removal of volatiles under vacuum at 20 °C yielded a pale yellow oil which crystallised to a pasty consistency on standing. M.s. showed S(SPh)₃, P(SPh)₃, and P₄S₃, with no *M*⁺ for P₄S₃(SPh)₂, indicating extensive decomposition on removal of solvent.

Acknowledgements

Messrs. S. Armstrong, J. M. Abberton, S. P. Harrison, I. R. Little, and R. Thoulass are thanked for their contributions to this work during undergraduate projects, and Dr. M. N. S. Hill for obtaining the n.m.r. spectra.

References

- 1 F. H. Musa and B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1984, 1517.
- 2 G. J. Penney and G. M. Sheldrick, J. Chem. Soc. A, 1971, 1100.
- 3 G. W. Hunt and A. W. Cordes, Inorg. Chem., 1971, 10, 1935.
- 4 M. Baudler, B. Kloth, D. Kock, and E. Tolls, Z. Naturforsch., Teil B, 1975, 30, 340.
- 5 A. M. Griffin, P. C. Minshall, and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1976, 809.
- 6 E. Fluck, N. Yutronic S., and W. Haubold, Z. Anorg. Allg. Chem., 1976, 420, 247.
- 7 C. C. Chang, R. C. Haltiwanger, and A. D. Norman, *Inorg. Chem.*, 1978, 17, 2056; C. C. Chang, R. C. Haltiwanger, M. L. Thompson, H. J. Chen, and A. D. Norman, *Inorg. Chem.*, 1979, 18, 1899.
- 8 (a) H. Lecher, Chem. Ber., 1915, 48, 1425; (b) ibid., 1920, 53, 568.
- 9 J. Schroeder, Z. Anorg. Allg. Chem., 1905, 44, 1.
- 10 G. Hackmann and E. Fluck, Z. Naturforsch., Teil B, 1971, 26, 982.
- 11 G. Grossmann, U. Pohle, and B. Thomas, Z. Chem., 1977, 17, 69.
- 12 G. Fritz and R. Uhlmann, Z. Anorg. Allg. Chem., 1978, 442, 95
- 13 K. Irgolic, R. A. Zingaro, and M. Kudchadker, *Inorg. Chem.*, 1965, 4, 1421.
- 14 R. D. Topsom and C. J. Wilkins, J. Inorg. Nucl. Chem., 1956, 3, 187.

Received 10th December 1984; Paper 4/2083